Finite dimensional varieties on hypergroups
نویسندگان
چکیده
منابع مشابه
Actions of Finite Hypergroups
This paper is concerned with actions of finite hypergroups on sets. After introducing the definitions in the first section, we use the notion of ‘maximal actions’ to characterise those hypergroups which arise from association schemes, introduce the natural sub-class of *-actions of a hypergroup and introduce a geometric condition for the existence of *-actions of a Hermitian hypergroup. Followi...
متن کاملon semihypergroups and hypergroups
in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...
15 صفحه اولOn maximal actions and w-maximal actions of finite hypergroups
Sunder and Wildberger (J. Algebr. Comb. 18, 135–151, 2003) introduced the notion of actions of finite hypergroups, and studied maximal irreducible actions and *-actions. One of the main results of Sunder and Wildberger states that if a finite hypergroup K admits an irreducible action which is both a maximal action and a *action, then K arises from an association scheme. In this paper we will fi...
متن کاملQuiver Varieties and Finite Dimensional Representations of Quantum Affine Algebras
Introduction 145 1. Quantum affine algebra 150 2. Quiver variety 155 3. Stratification of M0 163 4. Fixed point subvariety 167 5. Hecke correspondence and induction of quiver varieties 169 6. Equivariant K-theory 174 7. Freeness 178 8. Convolution 185 9. A homomorphism Uq(Lg)→ KGw×C ∗ (Z(w))⊗Z[q,q−1] Q(q) 192 10. Relations (I) 194 11. Relations (II) 202 12. Integral structure 214 13. Standard m...
متن کاملZero-cycles on varieties over finite fields
For any field k, Milnor [Mi] defined a sequence of groups K 0 (k), K M 1 (k), K M 2 (k), . . . which later came to be known as Milnor K-groups. These were studied extensively by Bass and Tate [BT], Suslin [Su], Kato [Ka1], [Ka2] and others. In [Som], Somekawa investigates a generalization of this definition proposed by Kato: given semi-abelian varieties G1, . . . , Gs over a field k, there is a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Aequationes mathematicae
سال: 2021
ISSN: 0001-9054,1420-8903
DOI: 10.1007/s00010-021-00777-y